login
A347260
Lexicographically earliest sequence S of distinct nonnegative terms such that the digits of (a(n) + a(n+1)) are the first n digits of S.
0
1, 0, 10, 91, 919, 9190, 91901, 919018, 9190173, 91901746, 919017453, 9190174538, 91901745381, 919017453809, 9190174538100, 91901745380991, 919017453809928, 9190174538099262, 91901745380992639, 919017453809926380, 9190174538099263811, 91901745380992638108, 919017453809926381082, 9190174538099263810819, 91901745380992638108199, 919017453809926381081990
OFFSET
1,3
COMMENTS
A self-describing sequence.
EXAMPLE
a(1) + a(2) = 1 + 0 = 1 and this 1 is the first digit of S;
a(2) + a(3) = 0 + 10 = 10 and 1, 0 are the first 2 digits of S;
a(3) + a(4) = 10 + 91 = 101 and 1, 0, 1 are the first 3 digits of S;
a(4) + a(5) = 91 + 919 = 1010 and 1, 0, 1, 0 are the first 4 digits of S;
a(5) + a(6) = 919 + 9190 = 10109 and 1, 0, 1, 0, 9 are the first 5 digits of S;
etc.
CROSSREFS
Cf. A300000.
Sequence in context: A051789 A343354 A338678 * A267833 A354380 A015467
KEYWORD
base,nonn
AUTHOR
Eric Angelini and Carole Dubois, Sep 30 2021
STATUS
approved