login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} A061019(d) * A003961(n/d), where A061019 negates the primes in the prime factorization, while A003961 shifts the factorization one step towards larger primes.
7

%I #28 Sep 18 2021 22:02:56

%S 1,1,2,7,2,2,4,13,19,2,2,14,4,4,4,55,2,19,4,14,8,2,6,26,39,4,68,28,2,

%T 4,6,133,4,2,8,133,4,4,8,26,2,8,4,14,38,6,6,110,93,39,4,28,6,68,4,52,

%U 8,2,2,28,6,6,76,463,8,4,4,14,12,8,2,247,6,4,78,28,8,8,4,110,421,2,6,56,4,4,4,26,8,38,16

%N a(n) = Sum_{d|n} A061019(d) * A003961(n/d), where A061019 negates the primes in the prime factorization, while A003961 shifts the factorization one step towards larger primes.

%C Dirichlet convolution of A003961 and A061019.

%C Dirichlet convolution of A003973 and A158523.

%C Multiplicative because A003961 and A061019 are.

%C All terms are positive because all terms of A347237 are nonnegative and A347237(1) = 1.

%C Union of sequences A001359 and A108605 (= 2*A001359) seems to give the positions of 2's in this sequence.

%H Antti Karttunen, <a href="/A347236/b347236.txt">Table of n, a(n) for n = 1..16383</a>

%H <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = Sum_{d|n} A003961(n/d) * A061019(d).

%F a(n) = Sum_{d|n} A003973(n/d) * A158523(d).

%F a(n) = Sum_{d|n} A347237(d).

%F a(n) = A347239(n) - A347238(n).

%F For all n >= 1, a(A000040(n)) = A001223(n).

%F Multiplicative with a(p^e) = (A151800(p)^(e+1)-(-p)^(e+1))/(A151800(p)+p). - _Sebastian Karlsson_, Sep 02 2021

%t f[p_, e_] := ((np = NextPrime[p])^(e + 1) - (-p)^(e + 1))/(np + p); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 02 2021 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A061019(n) = (((-1)^bigomega(n))*n);

%o A347236(n) = sumdiv(n,d,A061019(d)*A003961(n/d));

%Y Cf. A000040, A001223, A001359, A003961, A003973, A061019, A108605, A158523, A347237 (Möbius transform), A347238 (Dirichlet inverse), A347239.

%Y Cf. also A347136.

%Y Cf. A151800.

%K nonn,mult

%O 1,3

%A _Antti Karttunen_, Aug 24 2021