login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347225
Lesser of twin primes (A001359) being both half-period primes (A097443).
0
197, 599, 881, 1277, 1997, 2081, 2237, 2801, 2999, 3359, 4721, 5279, 5879, 6197, 6959, 7877, 8837, 9239, 9719, 12161, 12239, 13721, 17921, 17957, 18521, 21839, 22637, 24917, 28277, 30557, 31319, 31721, 32117, 32441, 32717, 34757, 35081, 35279, 35837, 38921, 39239, 39839
OFFSET
1,1
COMMENTS
A proper subset of both A001359 and A097443.
Number of terms < 10^k: 0, 0, 3, 19, 86, 516, 3686, 27834, 216758, 1739358, …
A243096 provides lesser of twin primes being both full reptend primes (A001913, A006883): in other words, lesser of twin primes whose periods difference is 2.
This sequence lists lesser of twin primes whose periods difference is 1. Equivalently, these twin primes are both half-period primes (A097443).
The twin primes conjecture being true should imply that these two sequences are infinite.
Surprisingly, apart from 1 and 2, for any other value of k integer, it appears that the sequence "lesser of twin primes whose periods difference is k" is empty or contains at most two terms (no counterexample found for twin primes below 10^9).
FORMULA
a(n) is congruent to {11, 17, 29} mod 30.
EXAMPLE
The decimal expansion 1/p for the prime p = 1277 has a periodic part length equal to (p-1)/2. 1277 is thus a half-period prime. The same applies for p + 2 = 1279 (prime). Hence 1277 is in sequence.
MAPLE
select(t -> isprime(t) and isprime(t + 2) and numtheory:-order(10, t) = (t - 1)/2 and numtheory:-order(10, t + 2) = (t + 1)/2, [seq(t, t = 3 .. 40000, 2)]);
KEYWORD
nonn,base
AUTHOR
Lamine Ngom, Aug 24 2021
STATUS
approved