Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Nov 20 2021 18:03:38
%S 546,45136,739648,5752422,3053080576,781678084096,12506920910848,
%T 209831713740735643648,241919495232854688763577028051799638016
%N Numbers k for which sigma(k)/k = 32/13.
%C This sequence will contain terms of the form 91*P, where P is a perfect number (A000396) not divisible by 7 or 13. Proof: sigma(91*P)/(91*P) = sigma(91)*sigma(P)/(91*P) = 112*(2*P)/(91*P) = 32/13. QED.
%C Terms ending in "6" or "48" have this form. Example: a(n) = 91*A000396(n) for n = 1, 5, 6, 7, 8, 9 and a(n) = 91*A000396(n+1) for n = 2, 3.
%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiperfect">Multiperfect Numbers and Hemiperfect Numbers</a>
%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy: Some Resources (preliminary version 4)</a>
%H Walter Nissen, <a href="http://upforthecount.com/math/ffp8.html">Primitive Friendly Pairs with friends < 2^34 with denom < 20000</a>
%e 5752422 is a term, since sigma(5752422)/5752422 = 14159808/5752422 = 32/13.
%t Select[Range[5*10^8], DivisorSigma[1, #]/# == 32/13 &]
%t Do[If[DivisorSigma[1, k]/k == 32/13, Print[k]], {k, 5*10^8}]
%Y Cf. A000203, A000396.
%Y Subsequence of A005101.
%K nonn,more
%O 1,1
%A _Timothy L. Tiffin_, Aug 22 2021
%E a(8)-a(9) from _Michel Marcus_, Aug 23 2021