login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of 4th powers of odd divisors of n that are <= sqrt(n).
3

%I #14 Feb 24 2024 11:03:40

%S 1,1,1,1,1,1,1,1,82,1,1,82,1,1,82,1,1,82,1,1,82,1,1,82,626,1,82,1,1,

%T 707,1,1,82,1,626,82,1,1,82,626,1,82,1,1,707,1,1,82,2402,626,82,1,1,

%U 82,626,2402,82,1,1,707,1,1,2483,1,626,82,1,1,82,3027,1,82,1,1,707

%N Sum of 4th powers of odd divisors of n that are <= sqrt(n).

%H David A. Corneth, <a href="/A347175/b347175.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} (2*k - 1)^4 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).

%e a(18) = 82 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the sum of fourth powers of 1 and 3 then add them i.e., a(18) = 1^4 + 3^4 = 82. - _David A. Corneth_, Feb 24 2024

%t Table[DivisorSum[n, #^4 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 75}]

%t nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^4 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%o (PARI)

%o a(n) = {

%o my(s = sqrtint(n), res);

%o n>>=valuation(n, 2);

%o d = divisors(n);

%o for(i = 1, #d,

%o if(d[i] <= s,

%o res += d[i]^4

%o ,

%o return(res)

%o )

%o ); res

%o } \\ _David A. Corneth_, Feb 24 2024

%Y Cf. A001159, A051001, A069288, A069289, A347143, A347172, A347173, A347174.

%K nonn,easy

%O 1,9

%A _Ilya Gutkovskiy_, Aug 21 2021