Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Feb 24 2024 10:16:07
%S 1,1,1,1,1,1,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,1,1,10,26,1,10,1,1,35,
%T 1,1,10,1,26,10,1,1,10,26,1,10,1,1,35,1,1,10,50,26,10,1,1,10,26,50,10,
%U 1,1,35,1,1,59,1,26,10,1,1,10,75,1,10,1,1,35,1,50,10,1,26
%N Sum of squares of odd divisors of n that are <= sqrt(n).
%H David A. Corneth, <a href="/A347173/b347173.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=1} (2*k - 1)^2 * x^((2*k - 1)^2) / (1 - x^(2*k - 1)).
%e a(18) = 10 as the odd divisors of 18 are the divisors of 9 which are 1, 3 and 9. Of those, 1 and 3 are <= sqrt(18) so we find the squares of 1 and 3 then add them i.e., a(18) = 1^2 + 3^2 = 10. - _David A. Corneth_, Feb 24 2024
%t Table[DivisorSum[n, #^2 &, # <= Sqrt[n] && OddQ[#] &], {n, 1, 80}]
%t nmax = 80; CoefficientList[Series[Sum[(2 k - 1)^2 x^((2 k - 1)^2)/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%o (PARI) a(n) = sum(k=0, sqrtint(n), if ((k%2) && !(n%k), k^2)); \\ _Michel Marcus_, Aug 22 2021
%o (PARI)
%o a(n) = {
%o my(s = sqrtint(n), res);
%o n>>=valuation(n, 2);
%o d = divisors(n);
%o for(i = 1, #d,
%o if(d[i] <= s,
%o res += d[i]^2
%o ,
%o return(res)
%o )
%o ); res
%o } \\ _David A. Corneth_, Feb 24 2024
%Y Cf. A001157, A050999, A069288, A069289, A095118, A347161, A347174, A347175.
%K nonn,easy
%O 1,9
%A _Ilya Gutkovskiy_, Aug 21 2021