login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that phi(binomial(k,2)) is a power of 2.
0

%I #21 Sep 08 2022 08:46:26

%S 2,3,4,5,6,16,17,256,257,65536,65537,4294967296

%N Numbers k such that phi(binomial(k,2)) is a power of 2.

%C Every Fermat prime appears in this sequence.

%C A number greater than 2^32 is in this sequence if and only if it is a Fermat prime.

%D M. Krizek, F. Luca and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, p. 86.

%D F. Luca, Pascal's triangle and constructible polygons, Util. Math. 58 (2000d), pp. 209-214.

%F For n >= 13, a(n) = A019434(n-7) (if it exists).

%t Select[Range[10^5],IntegerQ@Log2[EulerPhi@Binomial[#,2]]&] (* _Giorgos Kalogeropoulos_, Sep 08 2021 *)

%o (Magma) r:=7; IsInteger:=func<i | i eq Floor(i)>; lst:=[k: k in [2..6] | IsInteger(Log(2, EulerPhi(Binomial(k, 2))))]; t:=1; for x in [1..r] do m:=4^(2^x); if t eq 1 then Append(~lst, m); end if; if IsPrime(m+1) then Append(~lst, m+1); else t:=0; end if; end for; lst;

%Y Cf. A019434, A086700.

%K nonn,hard,more

%O 1,1

%A _Arkadiusz Wesolowski_, Aug 20 2021