login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Möbius transform of A341528, n * sigma(A003961(n)).
3

%I #19 Dec 24 2023 01:08:17

%S 1,7,17,44,39,119,83,268,261,273,153,748,233,581,663,1616,339,1827,

%T 455,1716,1411,1071,689,4556,1385,1631,3933,3652,927,4641,1177,9712,

%U 2601,2373,3237,11484,1553,3185,3961,10452,1803,9877,2063,6732,10179,4823,2537,27472,6433,9695,5763,10252,3179,27531,5967,22244

%N Möbius transform of A341528, n * sigma(A003961(n)).

%C Multiplicative because A341528 is.

%H Antti Karttunen, <a href="/A347124/b347124.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F a(n) = Sum_{d|n} A008683(n/d) * A341528(d).

%F a(n) = A347125(n) - A346239(n).

%F Multiplicative with a(p^e) = p^(e-1)*(q^e*(p*q-1)-p+1)/(q-1), where q = A151800(p). - _Sebastian Karlsson_, Sep 02 2021

%F Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = (1/zeta(3)) / Product_{p prime} (1 - (q(p)-p)/p^2 - q(p)/p^3) = 5.6488805... , and q(p) = A151800(p). - _Amiram Eldar_, Dec 24 2023

%t f[p_, e_] := Module[{q = NextPrime[p]}, p^(e-1) * (q^e * (p*q-1) - p + 1)/(q-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 24 2023 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A003973(n) = sigma(A003961(n));

%o A341528(n) = (n*A003973(n));

%o A347124(n) = sumdiv(n,d,moebius(n/d)*A341528(d));

%Y Cf. A002117, A003961, A003973, A008683, A151800, A341528, A341512, A346239, A347125.

%K nonn,mult

%O 1,2

%A _Antti Karttunen_, Aug 24 2021