login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
13

%I #32 Nov 17 2023 11:20:09

%S 1,1,8,113,2325,62896,2109143,84403033,3924963750,207976793991,

%T 12369246804853,815880360117978,59107920881218525,4665585774576259261,

%U 398534278371999103888,36627974592437584634573,3603954453161886215458025,377983931878997401821759456,42095013846928585982896180123

%N Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).

%C Stirling transform of A008542.

%C In general, for k >= 1, if e.g.f. = 1 / (k + 1 - k*exp(x))^(1/k), then a(n) ~ n! / (Gamma(1/k) * (k+1)^(1/k) * n^(1 - 1/k) * log(1 + 1/k)^(n + 1/k)). - _Vaclav Kotesovec_, Aug 14 2021

%H Alois P. Heinz, <a href="/A346985/b346985.txt">Table of n, a(n) for n = 0..343</a>

%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A008542(k).

%F a(n) ~ n! / (Gamma(1/6) * 7^(1/6) * n^(5/6) * log(7/6)^(n + 1/6)). - _Vaclav Kotesovec_, Aug 14 2021

%F For n > 0, a(n) = (1/n)*Sum_{k=0..n-1} binomial(n,k)*(n+5*k)*a(k). - _Tani Akinari_, Aug 22 2023

%F O.g.f. (conjectural): 1/(1 - x/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 13*x/(1 - 21*x/(1 - ... - (6*n-5)*x/(1 - 7*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). - _Peter Bala_, Aug 25 2023

%F a(0) = 1; a(n) = a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 17 2023

%p g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:

%p b:= proc(n, m) option remember;

%p `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 09 2021

%t nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!

%t Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]

%o (Maxima) a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);

%o makelist(a[n],n,0,50); /* _Tani Akinari_, Aug 22 2023 */

%Y Cf. A000670, A008542, A094419, A305404, A346982, A346983, A346984, A352117, A352118, A352119.

%Y Cf. A094419, A354252, A365555, A365556, A365557.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 09 2021