Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Nov 16 2023 11:50:42
%S 1,1,6,61,891,16996,400251,11217781,364638336,13486045291,
%T 559192836771,25691965808026,1295521405067181,71131584836353861,
%U 4224255395774155566,269791923787785076921,18439806740525320993551,1342957106015632474616956,103824389511747541791086511
%N Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(1/4).
%C Stirling transform of A007696.
%H Seiichi Manyama, <a href="/A346983/b346983.txt">Table of n, a(n) for n = 0..360</a>
%F a(n) = Sum_{k=0..n} Stirling2(n,k) * A007696(k).
%F a(n) ~ n! / (Gamma(1/4) * 5^(1/4) * n^(3/4) * log(5/4)^(n + 1/4)). - _Vaclav Kotesovec_, Aug 14 2021
%F O.g.f. (conjectural): 1/(1 - x/(1 - 5*x/(1 - 5*x/(1 - 10*x/(1 - 9*x/(1 - 15*x/(1 - ... - (4*n-3)*x/(1 - 5*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type. - _Peter Bala_, Aug 22 2023
%F a(0) = 1; a(n) = Sum_{k=1..n} (4 - 3*k/n) * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023
%F a(0) = 1; a(n) = a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Nov 16 2023
%p g:= proc(n) option remember; `if`(n<2, 1, (4*n-3)*g(n-1)) end:
%p b:= proc(n, m) option remember;
%p `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..18); # _Alois P. Heinz_, Aug 09 2021
%t nmax = 18; CoefficientList[Series[1/(5 - 4 Exp[x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
%t Table[Sum[StirlingS2[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
%Y Cf. A000670, A007696, A305404, A346982, A346984, A346985, A352117, A352118, A352119.
%Y Cf. A094417, A354242, A365567.
%K nonn,easy
%O 0,3
%A _Ilya Gutkovskiy_, Aug 09 2021