Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 03 2021 19:20:20
%S 211,257,277,331,509,563,587,647,653,673,683,709,751,757,839,853,919,
%T 983,997,1087,1117,1123,1163,1283,1433,1447,1493,1531,1579,1637,1733,
%U 1777,1889,1913,1973,1993,2179,2207,2251,2273,2287,2333,2357,2399,2447,2467
%N Isolated single primes enclosed by six composites on hexagonal spiral board of odd numbers.
%C It seems that more isolated primes, m, appear in regions 6*k^2-16*k+13 <= m <= 6*k^2-14*k+7 and 6*k^2-10*k+7 <= m <= 6*k^2-8*k+1 than the other 4 regions, where k (>= 1) is the layer number on the hexagonal board, which is illustrated in A345654.
%C Numbers of prime terms appearing in the 6 regions and 6 arms of a 10000-layer hexagonal board, with the 299970001 odd numbers up to 599940001, are:
%C Region Appearance Arm Appearance
%C ---------------------------------- ---------- ----------------- ----------
%C 6*k^2-18*k+15 <= m <= 6*k^2-16*k+9 2681490 m = 6*k^2-16*k+11 692
%C 6*k^2-16*k+13 <= m <= 6*k^2-14*k+7 3192576 m = 6*k^2-14*k+ 9 551
%C 6*k^2-14*k+11 <= m <= 6*k^2-12*k+5 2681571 m = 6*k^2-12*k+ 7 671
%C 6*k^2-12*k+ 9 <= m <= 6*k^2-10*k+3 2681254 m = 6*k^2-10*k+ 5 545
%C 6*k^2-10*k+ 7 <= m <= 6*k^2- 8*k+1 3191045 m = 6*k^2- 8*k+ 3 721
%C 6*k^2- 8*k+ 5 <= m <= 6*k^2- 6*k-1 2680620 m = 6*k^2- 6*k+ 1 1040
%e 3 is not a term because four of the six neighbors (1, 5, 13, 15, 17 and 19) are primes.
%e 211 is a term because 211 is a prime and all six neighbors (145, 147, 209, 213, 287 and 289) are composites.
%o (Python)
%o from sympy import isprime; from math import sqrt, ceil
%o def neib(m):
%o if m == 1: return [3, 5, 7, 9, 11, 13]
%o if m == 3: return [17, 19, 5, 1, 13, 15]
%o L = [m for i in range(6)]; n = int(ceil((3+sqrt(6*m + 3))/6)); x=6*n*n; y=12*n
%o a0 = x-18*n+15; a1 =x-16*n+11; a2 =x-14*n+9
%o a3 = x-y+7; a4 =x-10*n+5; a5 =x-8*n+3; a6 =x-6*n+1
%o p = 0 if m==a0 else 1 if m>a0 and m<a1 else 2 if m==a1 else 3 if m>a1 and m<a2 else 4 if m==a2 else 5 if m>a2 and m<a3 else 6 if m==a3 else 7 if m>a3 and m<a4 else 8 if m==a4 else 9 if m>a4 and m<a5 else 10 if m==a5 else 11 if m>a5 and m<a6 else 12
%o L[0] += y-10 if p<=4 else -2 if p<=6 else -y+16 if p<=9 else 2
%o L[1] += 2 if p<=1 else y-8 if p<=6 else -2 if p<=8 else -y+14
%o L[2] += -y+24 if p<=1 else 2 if p<=3 else y-6 if p<=8 else -2 if p<=10 else -y+12
%o L[3] += -2 if p==0 else -y+22 if p<=3 else 2 if p<=5 else y-4 if p<=10 else -2
%o L[4] += y-14 if p==0 else -2 if p<=2 else -y+20 if p<=5 else 2 if p<=7 else y-2
%o L[5] += y-12 if p<=2 else -2 if p<=4 else -y+18 if p<=7 else 2 if p<=9 else y
%o return L
%o for i in range(1, 1500):
%o m = 2*i - 1
%o if isprime(m) == 1:
%o L1 = [neib(m)[j] for j in range(6)]
%o if sum(isprime(k) for k in L1) == 0: print(m)
%Y Cf. A083577, A090687, A176608, A115258, A341542, A344481, A345654.
%K nonn
%O 1,1
%A _Ya-Ping Lu_, Aug 08 2021