login
a(n) = Sum_{d|n} mu(n/d) * binomial(3*d,d) / (2*d+1).
5

%I #6 Aug 07 2021 21:34:24

%S 1,2,11,52,272,1414,7751,43208,246663,1430440,8414639,50065628,

%T 300830571,1822758766,11124755380,68328711696,422030545334,

%U 2619630794574,16332922290299,102240108466928,642312451209982,4048514835624478,25594403741131679,162250237951706584

%N a(n) = Sum_{d|n} mu(n/d) * binomial(3*d,d) / (2*d+1).

%C Moebius transform of A001764.

%t Table[Sum[MoebiusMu[n/d] Binomial[3 d, d]/(2 d + 1), {d, Divisors[n]}], {n, 24}]

%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d)/(2*d+1)); \\ _Michel Marcus_, Aug 07 2021

%Y Cf. A001764, A002996, A008683.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Aug 07 2021