login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of the (n+6)-multiset {0,...,0,1,2,...,n} with six 0's.
3

%I #10 Nov 30 2021 08:41:18

%S 11,30,105,426,1940,9722,52902,309546,1933171,12809264,89613587,

%T 659255660,5082342477,40936552022,343612396821,2998777788602,

%U 27155414911274,254692965196866,2470107851719160,24734913573251578,255396574564032443,2715780007867965824

%N Number of partitions of the (n+6)-multiset {0,...,0,1,2,...,n} with six 0's.

%C Also number of factorizations of 2^6 * Product_{i=1..n} prime(i+1).

%H Alois P. Heinz, <a href="/A346852/b346852.txt">Table of n, a(n) for n = 0..571</a>

%o (Python)

%o from sympy import divisors, isprime, primorial

%o from functools import cache

%o @cache

%o def T(n, m): # after Indranil Ghosh in A001055

%o if isprime(n): return 1 if n <= m else 0

%o s = sum(T(n//d, d) for d in divisors(n)[1:-1] if d <= m)

%o return s + 1 if n <= m else s

%o def a(n): return (lambda x: T(x, x))(2**5 * primorial(n))

%o print([a(n) for n in range(1, 11)]) # _Michael S. Branicky_, Nov 30 2021

%Y Row n=6 of A346426.

%Y Cf. A346816.

%K nonn

%O 0,1

%A _Alois P. Heinz_, Aug 06 2021