login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346795
Irregular triangle T(n, k), n > 0, k = 1..A091220(n), read by rows; the n-th row gives, in ascending order, the distinct integers k such that A048720(k, m) = n for some m.
2
1, 1, 2, 1, 3, 1, 2, 4, 1, 3, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 7, 9, 1, 2, 3, 5, 6, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 3, 5, 15, 17, 1, 2, 3, 6, 7, 9, 14, 18, 1, 19, 1, 2, 3, 4, 5, 6, 10, 12, 20, 1, 7, 21
OFFSET
1,3
COMMENTS
The n-th row corresponds to the divisors of the n-th GF(2)[X]-polynomial.
The greatest value both in the n-th row and in the k-th row corresponds to A091255(n, k).
The index of the first row containing both n and k corresponds to A091256(n, k).
FORMULA
T(n, 1) = 1.
T(n, A091220(n)) = n.
Sum_{k = 1..A091220(n)} T(n, k) = A280493(n).
T(n, 1) XOR ... XOR T(n, A091220(n)) = A178908(n) (where XOR denotes the bitwise XOR operator).
EXAMPLE
The triangle starts:
1: [1]
2: [1, 2]
3: [1, 3]
4: [1, 2, 4]
5: [1, 3, 5]
6: [1, 2, 3, 6]
7: [1, 7]
8: [1, 2, 4, 8]
9: [1, 3, 7, 9]
10: [1, 2, 3, 5, 6, 10]
11: [1, 11]
12: [1, 2, 3, 4, 6, 12]
13: [1, 13]
14: [1, 2, 7, 14]
15: [1, 3, 5, 15]
PROG
(PARI) See Links section.
KEYWORD
nonn,tabf
AUTHOR
Rémy Sigrist, Sep 29 2021
STATUS
approved