login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = denominator(Sum_{k=1..2*n} Bernoulli(1 + k) / ((1 + k) * k^(1 + k))).
2

%I #9 Aug 13 2021 06:35:42

%S 1,12,9720,212625000,350211660750000,165830100163770908250000,

%T 615072417899094252893747931729750000,

%U 186290124133142953867176980119009688414239626750000,309270713892913107006055533400699678031452505346679687500000

%N a(n) = denominator(Sum_{k=1..2*n} Bernoulli(1 + k) / ((1 + k) * k^(1 + k))).

%t r[n_] := Sum[BernoulliB[1 + k] / ((1 + k) * k^(1 + k)), {k, 1, 2*n}];

%t Table[r[n], {n, 0, 10}] // Denominator

%o (PARI) a(n) = denominator(sum(k=1, 2*n, bernfrac(1+k)/((1+k)*k^(1+k)))); \\ _Michel Marcus_, Aug 12 2021

%Y Cf. A346716 (numerator), A346718 (rational limit).

%K nonn,frac

%O 0,2

%A _Peter Luschny_, Aug 11 2021