login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*k,k) / (4*k + 1).
14

%I #17 Aug 17 2023 04:50:44

%S 1,2,8,54,460,4361,43988,462580,5014252,55624944,628432101,7205500484,

%T 83632219892,980710882430,11601345881748,138278231052451,

%U 1659037424218780,20020306637339944,242835190201382648,2958961154058610552,36203518795424475661

%N a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*k,k) / (4*k + 1).

%C Binomial transform of A002294.

%H Seiichi Manyama, <a href="/A346647/b346647.txt">Table of n, a(n) for n = 0..500</a>

%F G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^3 * A(x)^5.

%F G.f.: Sum_{k>=0} ( binomial(5*k,k) / (4*k + 1) ) * x^k / (1 - x)^(k+1).

%F a(n) ~ 3381^(n + 3/2) / (78125 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - _Vaclav Kotesovec_, Jul 30 2021

%F D-finite with recurrence +8*n*(4*n+1) *(2*n-1)*(4*n-1)*a(n) +(-4405*n^4 +9322*n^3 -7655*n^2 +2978*n -480)*a(n-1) +12*(n-1) *(1255*n^3 -3829*n^2 +4204*n -1640) *a(n-2) -2*(n-1) *(n-2) *(10655*n^2 -32221*n +26076) *a(n-3) +4*(n-1) *(n-2) *(n-3)*(3445*n -6922) *a(n-4) -3381*(n-1)*(n-2) *(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Aug 17 2023

%p A346647 := proc(n)

%p hypergeom([-n,1/5,2/5,3/5,4/5],[1/2,3/4,1,5/4],-3125/256) ;

%p simplify(%) ;

%p end proc:

%p seq(A346647(n),n=0..40) ; # _R. J. Mathar_, Jan 10 2023

%t Table[Sum[Binomial[n, k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 20}]

%t nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 - x) + x (1 - x)^3 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t nmax = 20; CoefficientList[Series[Sum[(Binomial[5 k, k]/(4 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]

%t Table[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5, -n}, {1/2, 3/4, 1, 5/4}, -3125/256], {n, 0, 20}]

%o (PARI) a(n) = sum(k=0, n, binomial(n,k)*binomial(5*k,k)/(4*k + 1)); \\ _Michel Marcus_, Jul 26 2021

%Y Cf. A002294, A007317, A188687, A227035, A346646, A346648, A346649, A346650.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Jul 26 2021