Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 23 2021 06:40:27
%S 1,4,45,450,4500,45000,450000,4500000,45000000,450000000,4500000000,
%T 45000000000,450000000000,4500000000000,45000000000000,
%U 450000000000000,4500000000000000,45000000000000000,450000000000000000,4500000000000000000,45000000000000000000,450000000000000000000
%N Number of n-digit positive integers that are the product of two integers ending with 2.
%C a(n) is the number of n-digit numbers in A139245.
%C After initial 1 or 2 values the same as A137233. - _R. J. Mathar_, Aug 23 2021
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (10).
%H <a href="/index/Di#digits">Index entries for sequences related to digits</a>.
%F O.g.f.: x*(1 - 6*x + 5*x^2)/(1 - 10*x).
%F E.g.f.: (9*exp(10*x) - 9 + 110*x - 50*x^2)/200.
%F a(n) = 10*a(n-1) for n > 3, with a(1) = 1, a(2) = 4 and a(3) = 45.
%F a(n) = 45*10^(n-3) for n > 2.
%F a(n) = 45*A011557(n-3) for n > 2.
%F Sum_{i=1..n} a(n) = A093143(n-1).
%t LinearRecurrence[{10},{1,4,45},25]
%Y Cf. A011557 (powers of 10), A017293 (positive integers ending with 2), A052268 (number of n-digit integers), A139245 (product of two integers ending with 2), A093143, A337855, A337856.
%Y Cf. A137233.
%K nonn,base,easy,less
%O 1,2
%A _Stefano Spezia_, Jul 25 2021