login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/(6*n)) * Sum_{d|n} mu(n/d) * binomial(6*d,d).
5

%I #7 Jul 25 2021 02:41:21

%S 1,5,45,440,4750,54081,642341,7861216,98480286,1256564750,16273981757,

%T 213378921432,2826867619108,37782552518473,508840821825750,

%U 6898459208449920,94070535317459017,1289430373107917718,17755914760643605781,245518560759177014000,3407586451859019939012

%N a(n) = (1/(6*n)) * Sum_{d|n} mu(n/d) * binomial(6*d,d).

%C Inverse Euler transform of A002295.

%C Moebius transform of A261499.

%t Table[(1/(6 n)) Sum[MoebiusMu[n/d] Binomial[6 d, d], {d, Divisors[n]}], {n, 21}]

%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*binomial(6*d,d))/(6*n); \\ _Michel Marcus_, Jul 24 2021

%Y Cf. A002295, A004355, A008683, A022553, A261499, A346577, A346578, A346579, A346581, A346582.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Jul 24 2021