login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1; for n>1, a(n) gives the sum of the exponents in the different ways to write n as n = x^y, 2 <= x, 1 <= y.
2

%I #19 Nov 23 2024 08:31:52

%S 1,1,1,3,1,1,1,4,3,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,3,1,4,1,1,1,1,6,1,1,

%T 1,3,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,12,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1

%N a(1)=1; for n>1, a(n) gives the sum of the exponents in the different ways to write n as n = x^y, 2 <= x, 1 <= y.

%C Denoted by tau(n) in Mycielski (1951), Fehér et al. (2006), and Awel and Küçükaslan (2020).

%C This function depends only on the prime signature of n (see the Formula section).

%H Amiram Eldar, <a href="/A346403/b346403.txt">Table of n, a(n) for n = 1..10000</a>

%H Abdu Awel and M. Küçükaslan, <a href="http://dx.doi.org/10.22342/jims.26.2.808.224-233">A Note on Statistical Limit and Cluster Points of the Arithmetical Functions a_p(n), gamma(n), and tau(n) in the Sense of Density</a>, Journal of the Indonesian Mathematical Society, Vol. 26, No. 2 (2020), pp. 224-233.

%H Zoltán Fehér, Béla László, Martin Mačaj and Tibor Šalát, <a href="https://eudml.org/doc/128780">Remarks on arithmetical functions a_p(n), gamma(n), tau(n)</a>, Annales Mathematicae et Informaticae, Vol. 33 (2006), pp. 35-43.

%H Jan Mycielski, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm2/cm2140.pdf">Sur les représentations des nombres naturels par des puissances à base et exposant naturels</a>, Colloquium Mathematicum, Vol. 2 (1951), pp. 254-260.

%F If n = Product_{i} p_i^e_i, then a(n) = sigma(gcd(<e_i>)).

%F Sum_{n>=1} (a(n)-1)/n = Pi^2/6 + 1 (= A013661 + 1) (Mycielski, 1951).

%F a(n) = sigma(A052409(n)), for n>1. - _Ridouane Oudra_, Nov 23 2024

%e 4 = 2^2, gcd(2) = 2, sigma(2) = 3, so a(4) = 3. The representations are 4^1 and 2^2, and 1 + 2 = 3.

%e 144 = 2^4 * 3^2, gcd(4,2) = 2, sigma(2) = 3, so a(144) = 3. The representations are 144^1 and 12^2, and 1 + 2 = 3.

%p A052409:=n->igcd(map(i->i[2], ifactors(n)[2])[]):

%p 1, seq(numtheory[sigma](A052409(n)), n=2..120); # _Ridouane Oudra_, Nov 23 2024

%t a[n_] := DivisorSigma[1, GCD @@ FactorInteger[n][[;; , 2]]]; Array[a, 100]

%o (PARI) a(n) = if (n==1, 1, sigma(gcd(factor(n)[,2]))); \\ _Michel Marcus_, Jul 16 2021

%Y Cf. A000203, A013661, A089723, A052409.

%K nonn

%O 1,4

%A _Amiram Eldar_, Jul 15 2021