login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. -log(1 - x) * exp(2*x).
4

%I #14 May 27 2022 14:36:13

%S 0,1,5,20,78,324,1520,8336,53872,405600,3492416,33798016,362543104,

%T 4264455168,54540715008,753246711808,11168972683264,176937613586432,

%U 2982069587042304,53271637651996672,1005385746384846848,19987620914387812352,417489079682758213632

%N Expansion of e.g.f. -log(1 - x) * exp(2*x).

%H Seiichi Manyama, <a href="/A346394/b346394.txt">Table of n, a(n) for n = 0..450</a>

%F a(n) = n! * Sum_{k=0..n-1} 2^k / ((n-k) * k!).

%F a(n) = Sum_{k=0..n} binomial(n,k) * A002104(k).

%F a(n) ~ exp(2) * (n-1)!. - _Vaclav Kotesovec_, Aug 09 2021

%F a(0) = 0, a(1) = 1, a(n) = (n+1) * a(n-1) - 2 * (n-1) * a(n-2) + 2^(n-1). - _Seiichi Manyama_, May 27 2022

%t nmax = 22; CoefficientList[Series[-Log[1 - x] Exp[2 x], {x, 0, nmax}], x] Range[0, nmax]!

%t Table[n! Sum[2^k/((n - k) k!), {k, 0, n - 1}], {n, 0, 22}]

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=0; v[2]=1; for(i=2, n, v[i+1]=(i+1)*v[i]-2*(i-1)*v[i-1]+2^(i-1)); v; \\ _Seiichi Manyama_, May 27 2022

%Y Cf. A002104, A010842, A066534, A346395, A346396.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Jul 15 2021