%I #14 Jul 21 2021 09:18:51
%S 1,2,2,2,1,2,3,3,2,2,2,4,2,1,2,2,3,3,2,2,4,2,5,3,3,2,2,2,4,2,2,2,3,3,
%T 4,3,4,2,5,3,3,2,2,2,2,7,2,1,2,2,3,2,3,2,2,5,3,6,3,3,2,2,2,5,2,2,3,4,
%U 3,5,2,5,4,3,2,3,6,2,2,2,6,2,2,3,2,2,3,7
%N a(n) is the number of proper divisors of A324297(n) ending with 6.
%F a(n) = A346392(A324297(n)).
%e a(12) = 4 since there are 4 proper divisors of A324297(12) = 576 ending with 6: 6, 16, 36 and 96.
%t b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[b], AppendTo[b, 10*n+6]]]]; (* A324297 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#,10]==6&)], -1]]]]; a
%Y Cf. A017341, A032741, A324297, A324298, A337856, A346388 (ending with 5), A346392.
%K nonn,base
%O 1,2
%A _Stefano Spezia_, Jul 15 2021