login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of ten fifth powers in exactly four ways.
6

%I #6 Jul 31 2021 18:54:08

%S 55543,55574,55785,56566,58667,63318,72349,73002,85186,86506,87287,

%T 87529,88310,103134,111498,113599,114591,118250,119031,120351,120382,

%U 120593,121374,123475,128126,134475,134878,135201,137157,142008,142219,143000,143211,143506

%N Numbers that are the sum of ten fifth powers in exactly four ways.

%C Differs from A345636 at term 92 because 200009 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 8^5 + 10^5 = 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 8^5 + 10^5 = 2^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 = 1^5 + 2^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5.

%H Sean A. Irvine, <a href="/A346349/b346349.txt">Table of n, a(n) for n = 1..10000</a>

%e 55543 is a term because 55543 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**5 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 10):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v == 4])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A345636, A345856, A346339, A346348, A346350.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jul 13 2021