login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] having six cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
2

%I #7 Apr 18 2023 12:19:13

%S 1,21,322,4284,52941,627627,7264499,82948008,940359420,10628025408,

%T 120071145376,1358324810752,15403850755456,175232115148032,

%U 2000450203866368,22922052379355136,263639657993643008,3043516686354636800,35260990780587196416,409914386080322027520

%N Number of permutations of [n] having six cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.

%H Alois P. Heinz, <a href="/A346321/b346321.txt">Table of n, a(n) for n = 6..932</a>

%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (112, -5880, 192416, -4402160, 74858880, -981976576, 10178341888, -84702207744, 571843371008, -3151736133632, 14222131077120, -52534235435008, 158334587600896, -386804516978688, 757761436024832, -1171275127980032, 1394246317768704, -1231344289972224, 758836566687744, -290924978503680, 52183852646400).

%p b:= proc(n) option remember; series(`if`(n=0, 1, add(b(n-j)

%p *binomial(n-1, j-1)*x*ceil(2^(j-2)), j=1..n)), x, 7)

%p end:

%p a:= n-> coeff(b(n), x, 6):

%p seq(a(n), n=6..29);

%Y Column k=6 of A344855.

%K nonn,easy

%O 6,2

%A _Alois P. Heinz_, Jul 13 2021