login
A346261
Lexicographically earliest sequence of decimal words starting with 10 such that each term has Hamming distance at least 2 from all earlier terms.
3
10, 21, 32, 43, 54, 65, 76, 87, 98, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 201, 212, 220, 234, 245, 253, 267, 278, 286, 302, 313, 324, 330, 341, 356, 368, 375, 389, 397, 403, 414, 425, 431, 440, 452, 469, 496, 504, 515, 523, 536, 542, 550, 561, 579, 605, 616, 627, 638, 649, 651
OFFSET
1,1
LINKS
J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.
EXAMPLE
a(1) = 10 by definition.
a(2) = 21 because '2' has not yet appeared in the tens place and '1' has not yet appeared in the ones place.
PROG
(Python)
def ham(m, n):
s, t = str(min(m, n))[::-1], str(max(m, n))[::-1]
return len(t) - len(s) + sum(s[i] != t[i] for i in range(len(s)))
def aupton(terms):
alst = [10]
for n in range(2, terms+1):
an = alst[-1] + 1
while any(ham(an, aprev) < 2 for aprev in alst[::-1]): an += 1
alst.append(an)
return alst
print(aupton(60)) # Michael S. Branicky, Jul 22 2021
CROSSREFS
Lexicodes of minimal distance 1,2,3,... over alphabets of size 2: A001477, A001969, A075926, A075928, A075931, A075934, ...; size 3: A001477, A346002, A346003; size 10: A001477, A343444, A333568, A346000, A346001.
Cf. A207063.
Sequence in context: A322828 A104341 A098954 * A061470 A095778 A065438
KEYWORD
nonn,base
AUTHOR
Peter Woodward, Jul 11 2021
EXTENSIONS
Edited and corrected by N. J. A. Sloane, Jul 20 2021
STATUS
approved