login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of five fifth powers in exactly five ways.
7

%I #6 Jul 31 2021 19:36:15

%S 9006349824,65799210368,67629776576,181085909632,188189635424,

%T 295677350451,467139768468,471359089024,656243139157,691381929281,

%U 797466940832,854533526901,874953049024,891862586132,953769598750,1038549256768,1092458681568,1182658308657

%N Numbers that are the sum of five fifth powers in exactly five ways.

%C Differs from 103 terms known at term 6 because 288203194368 = 48^5 + 84^5 + 96^5 + 108^5 + 192^5 = 16^5 + 99^5 + 103^5 + 121^5 + 189^5 = 42^5 + 68^5 + 86^5 + 148^5 + 184^5 = 16^5 + 68^5 + 124^5 + 136^5 + 184^5 = 16^5 + 82^5 + 94^5 + 158^5 + 178^5 = 24^5 + 36^5 + 144^5 + 156^5 + 168^5.

%H Sean A. Irvine, <a href="/A346257/b346257.txt">Table of n, a(n) for n = 1..253</a>

%e 9006349824 is a term because 9006349824 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**5 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 5):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v == 5])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A344359, A344519, A345863, A346360.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jul 11 2021