login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).
6

%I #13 Aug 26 2021 10:56:19

%S 0,1,2,10,2,33,4,74,44,55,2,278,4,115,116,490,2,613,4,498,242,169,6,

%T 1942,92,265,742,1046,2,1591,6,3086,344,355,330,4986,4,487,542,3570,2,

%U 3347,4,1638,2326,737,6,12542,376,2121,716,2546,6,9869,388,7510,986,943,2,12894,6,1225,4872,18970,630,5353,4,3498,1492

%N Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).

%H Antti Karttunen, <a href="/A346239/b346239.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = Sum_{d|n} A008683(n/d) * A341512(d).

%F a(n) = A341512(n) - A346240(n).

%F a(n) = A347125(n) - A347124(n). - _Antti Karttunen_, Aug 25 2021

%o (PARI)

%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961

%o A341528(n) = (n*sigma(A003961(n)));

%o A341529(n) = (sigma(n)*A003961(n));

%o A341512(n) = (A341529(n)-A341528(n));

%o A346239(n) = sumdiv(n,d,moebius(n/d)*A341512(d));

%Y Cf. A000203, A003961, A008683, A341528, A341529, A341512, A346240, A347096, A347124, A347125.

%Y Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

%K nonn

%O 1,3

%A _Antti Karttunen_, Jul 13 2021