login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest nonnegative number k such that the decimal expansion of the product of the first k primes contains the string n.
1

%I #17 Jun 15 2022 10:49:14

%S 3,0,1,3,10,7,2,9,9,8,4,18,17,11,15,16,14,18,24,16,11,4,9,5,21,13,13,

%T 13,9,21,3,5,10,14,12,13,26,24,12,17,18,15,12,26,16,22,10,16,12,11,13,

%U 7,13,20,17,19,11,20,15,18,11,14,21,13,10,24,20,14,21,8,9

%N a(n) is the smallest nonnegative number k such that the decimal expansion of the product of the first k primes contains the string n.

%H Ilya Gutkovskiy, <a href="/A346203/a346203.jpg">Scatterplot of a(n) up to n=100000</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%e a(5) = 7 since 5 occurs in prime(7)# = 2 * 3 * 5 * 7 * 11 * 13 * 17 = 510510, but not in prime(0)#, prime(1)#, prime(2)#, ..., prime(6)#.

%t primorial[n_] := Product[Prime[j], {j, 1, n}]; a[n_] := (k = 0; While[! MatchQ[IntegerDigits[primorial[k]], {___, Sequence @@ IntegerDigits[n], ___}], k++]; k); Table[a[n], {n, 0, 70}]

%o (Python)

%o from sympy import nextprime

%o def A346203(n):

%o m, k, p, s = 1, 0, 1, str(n)

%o while s not in str(m):

%o k += 1

%o p = nextprime(p)

%o m *= p

%o return k # _Chai Wah Wu_, Jul 12 2021

%o (PARI) a(n) = my(k=0, p=1, q=1, sn=Str(n)); while (#strsplit(Str(q), sn)==1, k++; p=nextprime(p+1); q*=p); k; \\ _Michel Marcus_, Jul 13 2021; corrected Jun 15 2022

%Y Cf. A002110, A030000, A062584, A082058, A346120.

%K nonn,base

%O 0,1

%A _Ilya Gutkovskiy_, Jul 10 2021