login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=0} 1/(2^(2^(2*k)) - 1).
2

%I #7 Jan 14 2023 13:27:56

%S 1,1,2,5,0,3,0,5,1,7,5,7,8,1,2,5,0,0,0,1,0,8,4,2,0,2,1,7,2,4,8,5,5,0,

%T 4,4,3,4,0,0,7,4,5,2,8,0,0,8,6,9,9,4,1,7,1,1,4,2,5,7,8,1,2,5,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,1,7,2,7,2,3,3,7,1,1,0,1,8,8,8,8,9,2,5,0,7,7,2

%N Decimal expansion of Sum_{k>=0} 1/(2^(2^(2*k)) - 1).

%C This constant is transcendental (Schwarz, 1967).

%H Wolfgang Schwarz, <a href="https://www.jstor.org/stable/24489854">Remarks on the irrationality and transcendence of certain series</a>, Mathematica Scandinavica, Vol. 20, No. 2 (1967), pp. 269-274; <a href="https://www.mscand.dk/article/download/10836/8857">alternative link</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals A076214 - A346190.

%e 1.12503051757812500010842021724855044340074528008699...

%t RealDigits[Sum[1/(2^(2^(2*n) - 1)), {n, 0, 10}], 10, 100][[1]]

%Y Cf. A048649, A076214, A346190, A346192.

%K nonn,cons

%O 1,3

%A _Amiram Eldar_, Jul 09 2021