login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346168
Primes p such that p*p! - 1 is prime.
1
2, 3, 5, 7, 11, 397, 599, 2239
OFFSET
1,1
COMMENTS
a(9) > 10^4.
MAPLE
select(p -> isprime(p) and isprime(p*factorial(p) - 1), [$2 .. 600])
MATHEMATICA
Select[Range[2, 600], PrimeQ[#] && PrimeQ[#*#! - 1] &]
PROG
(PARI) a = List(); for(p=2, 600, if(isprime(p) && isprime(p*p!-1), listput(a, p))); a
(Sage) [p for p in range(2, 600) if is_prime(p) and is_prime(p*factorial(p) - 1)]
CROSSREFS
Prime terms of A090704.
Sequence in context: A082625 A030286 A046484 * A062888 A046483 A114835
KEYWORD
nonn,more
AUTHOR
Reza K Ghazi, Jul 08 2021
STATUS
approved