%I #21 Dec 04 2022 11:13:34
%S 1,2,4,7,11,13,19,26,34,38,48,51,63,69,74,89,105,113,131,135,141,151,
%T 173,181,205,217,243,250,278,283,313,344,355,371,385,393,429,447,459,
%U 474,514,520,562,573,582,604,650,665,713,737,754,766,818,844,854,861,879,907,965,980,1040,1070
%N Partial sums of A344005.
%H N. J. A. Sloane, <a href="/A345983/b345983.txt">Table of n, a(n) for n = 1..10000</a>
%H N. J. A. Sloane, <a href="/A345983/a345983.txt">Table of n, a(n) for n = 1..100000</a>
%t spm[n_]:=Module[{m=1},While[!Divisible[m(m+1),n],m++];m]; Accumulate[ Array[ spm,100]] (* _Harvey P. Dale_, Dec 04 2022 *)
%o (Python 3.8+)
%o from itertools import combinations, count, islice
%o from math import prod
%o from sympy import factorint
%o from sympy.ntheory.modular import crt
%o def A345983_gen(): # generator of terms
%o c = 1
%o for n in count(2):
%o yield c
%o plist = tuple(p**q for p, q in factorint(n).items())
%o c += n-1 if len(plist) == 1 else int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l))))
%o A345983_list = list(islice(A345983_gen(),25)) # _Chai Wah Wu_, Jun 01 2022
%Y Cf. A011772, A344005, A345984.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Jul 09 2021