%I #32 Jan 26 2022 21:03:50
%S 1,16,61,81,256,625,976,1296,2401,4096,4941,6561,10000,14641,15616,
%T 20736,28561,38125,38416,50625,65536,79056,83521,104976,130321,146461,
%U 160000,194041,194481,229981,234256,249856,279841,331776,390625,400221,456976,531441
%N Positive integers representable by the two cyclotomic binary forms Phi_5(x,y) and Phi_12(u,v).
%C Positive integers C such that Phi_5(x,y) = Phi_12(u,v) = C has a solution with nonzero (x,y,u,v).
%C A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is represented by f if f(x,y) = n has an integer solution.
%H Étienne Fouvry, Claude Levesque and Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017.
%e Phi_5(1,3) = 1^4 + 1^3*(3) + 1^2*(3)^2 + 1*(3)^3 + (3)^4 = 1  3 + 9  27 + 81 = 61 and Phi_12(2, 3) = 2^4  2^2*3^2 + 3^4 = 16  36 + 81 = 61, so 61 is a term.
%Y Cf. A296095.
%K nonn
%O 1,2
%A _Shashi Kant Pandey_, Jul 23 2021
%E a(8)a(38) from _Jon E. Schoenfield_, Jul 24 2021
