Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 10 2023 20:30:05
%S 608,809,897,924,1166,1241,1458,1459,1506,1547,1718,1729,1832,1932,
%T 1977,1982,2112,2162,2179,2188,2211,2279,2283,2291,2296,2336,2337,
%U 2408,2427,2541,2592,2594,2613,2634,2684,2689,2704,2764,2776,2779,2854,2941,2984,2988,3009
%N Numbers whose fourth powers are zeroless pandigital.
%C Zeroless pandigital means that it contains all the digits 1 through 9, but doesn't contain a zero.
%H Alois P. Heinz, <a href="/A345875/b345875.txt">Table of n, a(n) for n = 1..10000</a>
%e 608^4 = 136651472896. Thus, 608 belongs to this sequence.
%p q:= n-> is({convert(n^4, base, 10)[]}={$1..9}):
%p select(q, [$1..3000])[]; # _Alois P. Heinz_, Jun 29 2021
%t Select[Range[8000], Union[IntegerDigits[#^4]] == {1, 2, 3, 4, 5, 6, 7, 8, 9} &]
%o (Python)
%o def ok(n): return set(str(n**4)) == set("123456789")
%o print(list(filter(ok, range(3000)))) # _Michael S. Branicky_, Jun 27 2021
%o (PARI) isok(k) = my(d=digits(k^4)); vecmin(d) && (#Set(d) == 9); \\ _Michel Marcus_, Jun 30 2021
%Y Cf. A071519 (for squares), A124628 (for cubes).
%Y Subsequence of A121321 (4th power is pandigital).
%K nonn,base
%O 1,1
%A _Tanya Khovanova_, Jun 27 2021