Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 31 2021 21:33:37
%S 4228,4403,4468,5443,5508,5683,6613,6643,6658,6708,6773,6838,6868,
%T 6883,6948,7013,7093,7138,7203,7267,7268,7332,7397,7478,7507,7572,
%U 7588,7828,7858,7923,7988,8113,8133,8228,8353,8418,8533,8547,8548,8612,8723,8788,8852
%N Numbers that are the sum of eight fourth powers in exactly five ways.
%C Differs from A345580 at term 11 because 6723 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%H Sean A. Irvine, <a href="/A345837/b345837.txt">Table of n, a(n) for n = 1..10000</a>
%e 4403 is a term because 4403 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**4 for x in range(1, 1000)]
%o for pos in cwr(power_terms, 8):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k, v in keep.items() if v == 5])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A345580, A345787, A345827, A345836, A345838, A345847, A346330.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, Jun 26 2021