Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #61 Jul 10 2021 23:28:55
%S 1,3,11,44,22,16685,5325,1775,710,355,104348,312689,1146408,20530996,
%T 10838702,5419351,165707065,411557987
%N a(n) is the smallest integer k > 0 such that 10^(-n-1) < |cos(k) - round(cos(k))| < 10^(-n).
%e For n = 4, a(n) = 22 because 22 is the smallest positive integer k such that 10^(-5) < |cos(k) - round(cos(k))| < 10^(-4): |cos(22) - round(cos(22))| = 0.0000391...
%o (C++)
%o /* Only suitable for computing a(0) to a(15) due to double precision limits. */
%o #include <iostream>
%o #include <cmath>
%o using namespace std;
%o int main(int argc, char** argv) {
%o for (int n=0; n<=15; n++) {
%o for (int k=1; k<=20530996; k++) {
%o double x = cos(k);
%o double val = abs(x-round(x));
%o if (val < pow(10, -n) && val > pow(10, -n-1)){
%o cout << k <<", ";
%o break;
%o }
%o }
%o }
%o }
%o (PARI) a(n) = my(k=1, ok=0, x); while (!ok, x=abs(cos(k) - round(cos(k))); ok = (x>1/10^(n+1)) && (x < 1/10^n); if (ok, break); k++); k; \\ _Michel Marcus_, Jul 02 2021
%Y Cf. A346033 (sin), A345404 (tan).
%K nonn,more
%O 0,2
%A _Treanungkur Mal_, Jul 02 2021
%E a(16)-a(17) from _Jon E. Schoenfield_ and _Sean A. Irvine_, Jul 03 2021