login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are the sum of eight fifth powers in seven or more ways.
7

%I #6 Jul 31 2021 16:17:20

%S 4104553,4915506,6011150,6027989,6323394,6563733,6622231,6776363,

%T 6785394,7982834,8181481,8288806,8625619,8658144,8710484,8742208,

%U 8773477,8932244,8996669,9252219,9253706,9311478,9773236,9904983,9976120,10036233,10045233,10053008

%N Numbers that are the sum of eight fifth powers in seven or more ways.

%H Sean A. Irvine, <a href="/A345615/b345615.txt">Table of n, a(n) for n = 1..1000</a>

%e 4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**5 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 8):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 7])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A345582, A345614, A345616, A345624, A345629, A346332.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 20 2021