|
|
A345593
|
|
Numbers that are the sum of nine fourth powers in nine or more ways.
|
|
8
|
|
|
8259, 9299, 9539, 10709, 10819, 10884, 10949, 10964, 11124, 11444, 11573, 11668, 11684, 11924, 12099, 12164, 12339, 12404, 12549, 12708, 12773, 12853, 12918, 12948, 13013, 13139, 13204, 13269, 13284, 13349, 13379, 13444, 13509, 13524, 13589, 13764, 13829
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Sean A. Irvine, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
Cf. A345548, A345584, A345592, A345594, A345602, A345626, A345851.
Sequence in context: A031850 A327418 A168664 * A345851 A166194 A269959
Adjacent sequences: A345590 A345591 A345592 * A345594 A345595 A345596
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David Consiglio, Jr., Jun 20 2021
|
|
STATUS
|
approved
|
|
|
|