login
A345588
Numbers that are the sum of nine fourth powers in four or more ways.
8
2854, 2919, 2934, 2949, 2964, 3014, 3029, 3094, 3159, 3174, 3189, 3204, 3254, 3269, 3429, 3444, 3558, 3573, 3638, 3798, 3813, 3974, 4034, 4134, 4149, 4164, 4179, 4182, 4209, 4214, 4229, 4244, 4274, 4294, 4309, 4374, 4389, 4404, 4419, 4439, 4454, 4469, 4484
OFFSET
1,1
LINKS
EXAMPLE
2919 is a term because 2919 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 4])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved