login
Numbers that are the sum of six fourth powers in four or more ways.
8

%I #6 Jul 31 2021 18:05:06

%S 6626,6691,6866,9251,9491,10115,10706,10786,11555,12595,14225,14691,

%T 14771,15315,15330,15395,15570,16051,16595,16610,16660,16675,16850,

%U 17090,17091,17236,17316,17331,17346,17860,17875,17940,17955,18195,18786,18851,18866,19155

%N Numbers that are the sum of six fourth powers in four or more ways.

%H Sean A. Irvine, <a href="/A345561/b345561.txt">Table of n, a(n) for n = 1..10000</a>

%e 6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**4 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 6):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 4])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A344354, A345513, A345560, A345562, A345570, A345718, A345816.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 20 2021