%I #6 Aug 05 2021 15:19:30
%S 966,971,978,985,992,1004,1011,1018,1022,1048,1055,1056,1062,1063,
%T 1074,1076,1078,1081,1083,1085,1088,1092,1093,1095,1097,1098,1100,
%U 1102,1104,1107,1109,1111,1112,1114,1117,1118,1119,1121,1123,1124,1126,1128,1130,1133
%N Numbers that are the sum of nine cubes in ten or more ways.
%H Sean A. Irvine, <a href="/A345549/b345549.txt">Table of n, a(n) for n = 1..10000</a>
%e 971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**3 for x in range(1, 1000)]
%o for pos in cwr(power_terms, 9):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k, v in keep.items() if v >= 10])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A345540, A345548, A345558, A345594, A345802, A346803.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, Jun 20 2021