login
Numbers that are the sum of nine cubes in ten or more ways.
7

%I #6 Aug 05 2021 15:19:30

%S 966,971,978,985,992,1004,1011,1018,1022,1048,1055,1056,1062,1063,

%T 1074,1076,1078,1081,1083,1085,1088,1092,1093,1095,1097,1098,1100,

%U 1102,1104,1107,1109,1111,1112,1114,1117,1118,1119,1121,1123,1124,1126,1128,1130,1133

%N Numbers that are the sum of nine cubes in ten or more ways.

%H Sean A. Irvine, <a href="/A345549/b345549.txt">Table of n, a(n) for n = 1..10000</a>

%e 971 is a term because 971 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 7^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 7^3.

%o (Python)

%o from itertools import combinations_with_replacement as cwr

%o from collections import defaultdict

%o keep = defaultdict(lambda: 0)

%o power_terms = [x**3 for x in range(1, 1000)]

%o for pos in cwr(power_terms, 9):

%o tot = sum(pos)

%o keep[tot] += 1

%o rets = sorted([k for k, v in keep.items() if v >= 10])

%o for x in range(len(rets)):

%o print(rets[x])

%Y Cf. A345540, A345548, A345558, A345594, A345802, A346803.

%K nonn

%O 1,1

%A _David Consiglio, Jr._, Jun 20 2021