login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345542
Numbers that are the sum of nine positive cubes in three or more ways.
8
224, 231, 238, 245, 250, 257, 259, 264, 271, 276, 278, 280, 283, 285, 287, 290, 292, 294, 297, 299, 301, 302, 309, 311, 313, 315, 316, 318, 320, 322, 327, 334, 335, 337, 339, 341, 346, 348, 350, 353, 355, 357, 362, 365, 372, 374, 376, 379, 381, 383, 386, 387
OFFSET
1,1
LINKS
EXAMPLE
231 is a term because 231 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
MATHEMATICA
Select[Range[400], Length[Select[PowersRepresentations[#, 9, 3], FreeQ[ #, 0]&]]> 2&] (* Harvey P. Dale, Jan 04 2022 *)
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 3])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition corrected by Harvey P. Dale, Jan 04 2022
STATUS
approved