Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jul 19 2021 08:17:20
%S 0,1,2,1,-5,3,141,348,-1938,3013,274327,1583338,-4613476,41135339,
%T 3201505997,33153080054,49123558416,2360520208825,133442956587099,
%U 2109709010976874,14751973018988252,338170133891984663,15120630911878380457,324654726628159335686
%N E.g.f.: log(1 - log(1 - x) * exp(x)).
%H <a href="/index/Lo#logarithmic">Index entries for sequences related to logarithmic numbers</a>
%F a(0) = 0; a(n) = A002104(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A002104(n-k) * k * a(k).
%t nmax = 23; CoefficientList[Series[Log[1 - Log[1 - x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
%t A002104[n_] := A002104[n] = n! Sum[1/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = A002104[n] - (1/n) Sum[Binomial[n, k] A002104[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
%o (PARI) my(x='x+O('x^25)); concat(0, Vec(serlaplace(log(1 - log(1 - x) * exp(x))))) \\ _Michel Marcus_, Jul 19 2021
%Y Cf. A002104, A009321, A009324, A191365, A346427.
%K sign
%O 0,3
%A _Ilya Gutkovskiy_, Jul 18 2021