login
A345356
Numbers k coprime to 30 such that ceiling(sqrt(k))^2 - k is a square.
0
1, 49, 77, 91, 121, 143, 169, 187, 209, 221, 247, 289, 299, 323, 361, 391, 437, 493, 529, 551, 589, 667, 713, 841, 851, 899, 961, 1073, 1147, 1189, 1247, 1271, 1333, 1369, 1457, 1517, 1591, 1681, 1739, 1763, 1813, 1849, 1927, 1961, 2009, 2021
OFFSET
1,2
COMMENTS
Multiples of 2, 3, and 5 are excluded. This is not a subsequence of A087718, since not all terms are semiprimes. Subsequence of A077554 (limited data)? Besides 1, a subsequence of A038510.
EXAMPLE
For k=77, ceiling(sqrt(k)) is 9, so we evaluate 9^2 - 77 = 4, which is a square, so 77 is a term.
Let k=97, 100 - 97 = 3 is not a square and is not a term.
MATHEMATICA
Select[Range[2000], CoprimeQ[#, 30] && IntegerQ @ Sqrt[Ceiling[Sqrt[#]]^2 - #] &] (* Amiram Eldar, Jun 23 2021 *)
PROG
(PARI) genit(minn=1, maxx)={arr=List(); forstep(w=minn, maxx, 2, if(w%5==0||w%6==3, next); z=sqrtint(w-1)+1; if(issquare(z^2-w)>0, listput(arr, w); next)); arr}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bill McEachen, Jun 15 2021
STATUS
approved