%I #10 Oct 18 2021 19:31:26
%S 0,2,6,2,30,8,210,2,6,32,2310,8,30030,212,36,2,510510,8,9699690,32,
%T 216,2312,223092870,8,30,30032,6,212,6469693230,38,200560490130,2,
%U 2316,510512,240,8,7420738134810,9699692,30036,32,304250263527210,218,13082761331670030,2312,36
%N a(n) = Sum_{p|n} (p #).
%F G.f.: Sum_{k>=1} prime(k)# * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Sep 10 2021
%F a(prime(n)) = A002110(n). - _Wesley Ivan Hurt_, Oct 18 2021
%e a(14) = Sum_{p|14} p # = 2 # + 7 # = 2 + 7*5*3*2 = 212.
%t Table[Sum[Product[i^(PrimePi[i] - PrimePi[i - 1]), {i, k}] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
%Y Cf. A002110, A062797.
%K nonn
%O 1,2
%A _Wesley Ivan Hurt_, Jun 12 2021