OFFSET
1,2
COMMENTS
If p is prime, a(p) = Sum_{d|p} d^rad(d) = 1^1 + p^p = p^p + 1.
FORMULA
a(prime(n)) = A125137(n). - Michel Marcus, Jun 12 2021
EXAMPLE
a(4) = Sum_{d|4} d^rad(d) = 1^1 + 2^2 + 4^2 = 21.
a(6) = Sum_{d|6} d^rad(d) = 1^1 + 2^2 + 3^3 + 6^6 = 46688.
MATHEMATICA
Table[Sum[(1 - Ceiling[n/i] + Floor[n/i]) i^Product[k^((PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k])), {k, i}], {i, n}], {n, 30}]
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]);
a(n) = sumdiv(n, d, d^rad(d)); \\ Michel Marcus, Jun 12 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 12 2021
STATUS
approved