OFFSET
1,4
FORMULA
G.f.: x + x^2 * Product_{n>=1} (1 + (-x)^n)^((-1)^n*a(n)).
a(n+2) = (1/n) * Sum_{k=1..n} (-1)^(k+1) * ( Sum_{d|k} (-1)^(k/d+d) * d * a(d) ) * a(n-k+2).
a(n) ~ c * d^n / n^(3/2), where d = 2.21094707842288180828190718521597733363607957468229824761... and c = 0.664585976397397791197984310778764361056468131968... - Vaclav Kotesovec, Jun 19 2021
MATHEMATICA
nmax = 38; A[_] = 0; Do[A[x_] = x + x^2 Exp[Sum[(-1)^(k + 1) A[(-1)^(k + 1) x^k]/k, {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[(-1)^(k + 1) Sum[(-1)^(k/d + d) d a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 38}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 11 2021
STATUS
approved