login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Integral_{x=0..1} log(G(x+1)) dx, where G(x) is the Barnes G-function.
0

%I #11 Jul 28 2021 17:00:06

%S 4,5,2,9,3,6,4,5,8,6,8,1,0,1,1,7,9,1,2,8,9,9,2,2,1,4,3,8,3,9,1,4,2,0,

%T 1,0,6,9,2,9,2,6,4,2,8,1,5,1,5,4,8,0,5,7,4,2,1,9,7,8,2,4,1,9,3,3,3,0,

%U 1,1,5,2,9,7,1,4,2,5,1,9,9,9,4,9,8,8,1

%N Decimal expansion of Integral_{x=0..1} log(G(x+1)) dx, where G(x) is the Barnes G-function.

%D H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012. See p. 53.

%H Ernest William Barnes, <a href="https://gdz.sub.uni-goettingen.de/id/PPN600494829_0031">The theory of the G-function</a>, Quart. J. Math., Vol. 31 (1900), pp. 264-314. See p. 288.

%H Junesang Choi and Hari M. Srivastava, <a href="https://doi.org/10.1006/jmaa.1997.5198">Sums associated with the zeta function</a>, Journal of Mathematical Analysis and Applications, Vol. 206, No. 1 (1997), pp. 103-120. See eq. (2.55), p. 114.

%H Junesang Choi and H. M. Srivastava, <a href="https://doi.org/10.1016/S0377-0427(00)00311-3">Certain classes of series associated with the Zeta function and multiple Gamma functions</a>, Journal of Computational and Applied Mathematics, Vol. 118, No. 1-2 (2000), pp. 87-109. See eq. (5.10), p. 97.

%H Junesang Choi, H. M. Srivastava and J. R. Quine, <a href="https://doi.org/10.1017/S0004972700014210">Some series involving the zeta function</a>, Bulletin of the Australian Mathematical Society, Vol. 51, No. 3 (1995), pp. 383-393. See p. 386.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>.

%F Equals 1/12 + log(2*Pi)/4 - 2*log(A), where A is the Glaisher-Kinkelin constant (A074962) (Barnes, 1899).

%F Equals 1/12 + (1/4) * A061444 - 2 * A225746.

%F Equals 2*zeta'(-1) - zeta'(0)/2 - 1/12. - _Vaclav Kotesovec_, Jun 19 2021

%e 0.04529364586810117912899221438391420106929264281515480574...

%t RealDigits[1/12 + Log[2*Pi]/4 - 2*Log[Glaisher], 10, 100][[1]]

%Y Cf. A061444, A074962, A225746.

%Y Similar constant: A110544.

%Y Cf. A087013, A087014, A087015, A087016, A087017, A252798, A252799.

%K nonn,cons

%O -1,1

%A _Amiram Eldar_, Jun 10 2021

%E Offset corrected by _Georg Fischer_, Jul 28 2021