|
|
A345184
|
|
Numbers that are the sum of five third powers in exactly eight ways.
|
|
7
|
|
|
4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5914, 6075, 6202, 6499, 6560, 6616, 6642, 6677, 6833, 6884, 7008, 7111, 7128, 7155, 7218, 7344, 7395, 7641, 7696, 7729, 7785, 7813, 7820, 7849, 7883, 8037, 8100, 8243, 8282, 8308, 8315
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Differs from A345183 at term 13 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3.
|
|
LINKS
|
|
|
EXAMPLE
|
4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3 = 1^3 + 3^3 + 7^3 + 9^3 + 14^3 = 1^3 + 8^3 + 8^3 + 11^3 + 11^3 = 2^3 + 4^3 + 6^3 + 6^3 + 15^3 = 3^3 + 3^3 + 5^3 + 7^3 + 15^3 = 3^3 + 3^3 + 10^3 + 11^3 + 11^3 = 4^3 + 6^3 + 6^3 + 8^3 + 14^3 = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|