login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(2) = 0; a(n) = Sum_{d|n, d < n} a(d).
7

%I #27 Nov 25 2024 16:29:01

%S 1,0,1,1,1,2,1,2,2,2,1,5,1,2,3,4,1,6,1,5,3,2,1,12,2,2,4,5,1,10,1,8,3,

%T 2,3,18,1,2,3,12,1,10,1,5,8,2,1,28,2,6,3,5,1,16,3,12,3,2,1,31,1,2,8,

%U 16,3,10,1,5,3,10,1,50,1,2,8,5,3,10,1,28,8,2,1,31,3,2,3,12,1,36

%N a(1) = 1, a(2) = 0; a(n) = Sum_{d|n, d < n} a(d).

%C From _Antti Karttunen_, Nov 25 2024: (Start)

%C a(n) is the number of strict chains of divisors from n to 1 that do not end with 2/1. For example, the a(n) such chains for n = 1, 2, 4, 6, 8, 12, 30 are:

%C 1 (none) 4/1 6/1 8/1 12/1 30/1

%C 6/3/1 8/4/1 12/3/1 30/3/1

%C 12/4/1 30/5/1

%C 12/6/1 30/6/1

%C 12/6/3/1 30/10/1

%C 30/15/1

%C 30/6/3/1

%C 30/10/5/1

%C 30/15/3/1

%C 30/15/5/1

%C leaving 1, 0, 1, 2, 2, 5, 10 chains out of the 1, 1, 2, 3, 4, 8, 13 chains depicted in the illustration of A074206.

%C Equally, a(n) is the number of strict chains of divisors from n to 1 where n is not followed by n/2 as the second divisor in the chain, which explains nicely the formula a(n) = A074206(n) - A074206(n/2) when n is even.

%C (End)

%H Antti Karttunen, <a href="/A345182/b345182.txt">Table of n, a(n) for n = 1..20000</a>

%F G.f. A(x) satisfies: A(x) = x - x^2 + A(x^2) + A(x^3) + A(x^4) + ...

%F a(n) = A074206(n) if n is odd, otherwise a(n) = A074206(n) - A074206(n/2).

%t a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[If[d < n, a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 90}]

%t nmax = 90; A[_] = 0; Do[A[x_] = x - x^2 + Sum[A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

%o (PARI)

%o memoA345182 = Map();

%o A345182(n) = if(n<=2, n%2, my(v); if(mapisdefined(memoA345182,n,&v), v, v = sumdiv(n,d,if(d<n,A345182(d),0)); mapput(memoA345182,n,v); (v))); \\ _Antti Karttunen_, Nov 22 2024

%o (PARI)

%o up_to = 20000;

%o A345182list(up_to_n) = { my(v=vector(up_to_n)); v[1] = 1; v[2] = 0; for(n=3,up_to_n,v[n] = sumdiv(n,d,(d<n)*v[d])); (v); };

%o v345182 = A345182list(up_to);

%o A345182(n) = v345182[n]; \\ _Antti Karttunen_, Nov 25 2024

%Y Cf. A022825 (partial sums), A074206, A167865, A320224, A345138, A345141, A378218 (Dirichlet inverse), A378223 (inverse Möbius transform).

%K nonn

%O 1,6

%A _Ilya Gutkovskiy_, Jun 10 2021