OFFSET
1,2
COMMENTS
If p is prime, a(p) = Sum_{k=1..p} Sum_{i=1..k} k^(1 - ceiling(p/k^i) + floor(p/k^i)) = 1*(1^1) + ( 2*(2)^0 + ... + (p-1)*(p-1)^0 ) + p^1 + (p-1)(p^0) = p*(p-1)/2 + p + (p-1) = (p^2 + 3*p - 2)/2.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
Vaclav Kotesovec, Plot of a(n)/(n^2/2) for n = 1..1000
FORMULA
Conjecture: a(n) ~ n^2/2. - Vaclav Kotesovec, Jun 08 2021
EXAMPLE
a(4) = Sum_{k=1..4} Sum_{i=1..k} k^(1 - ceiling(4/k^i) + floor(4/k^i)) = (1^1) + (2^1 + 2^1) + (3^0 + 3^0 + 3^0) + (4^1 + 4^0 + 4^0 + 4^0) = 15.
MATHEMATICA
Table[Sum[Sum[k^(1 - Ceiling[n/k^i] + Floor[n/k^i]), {i, k}], {k, n}], {n,
80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 07 2021
STATUS
approved