login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345096
a(n) = Sum_{k=1..n} Sum_{i=1..k} k^(1 - ceiling(n/k^i) + floor(n/k^i)).
1
1, 4, 8, 15, 19, 29, 34, 48, 57, 69, 76, 101, 103, 125, 140, 166, 169, 206, 208, 247, 259, 285, 298, 353, 357, 389, 418, 457, 463, 529, 526, 589, 605, 645, 674, 756, 739, 797, 832, 903, 901, 991, 988, 1069, 1109, 1149, 1174, 1294, 1285, 1366, 1394, 1471, 1483, 1601, 1608
OFFSET
1,2
COMMENTS
If p is prime, a(p) = Sum_{k=1..p} Sum_{i=1..k} k^(1 - ceiling(p/k^i) + floor(p/k^i)) = 1*(1^1) + ( 2*(2)^0 + ... + (p-1)*(p-1)^0 ) + p^1 + (p-1)(p^0) = p*(p-1)/2 + p + (p-1) = (p^2 + 3*p - 2)/2.
FORMULA
Conjecture: a(n) ~ n^2/2. - Vaclav Kotesovec, Jun 08 2021
EXAMPLE
a(4) = Sum_{k=1..4} Sum_{i=1..k} k^(1 - ceiling(4/k^i) + floor(4/k^i)) = (1^1) + (2^1 + 2^1) + (3^0 + 3^0 + 3^0) + (4^1 + 4^0 + 4^0 + 4^0) = 15.
MATHEMATICA
Table[Sum[Sum[k^(1 - Ceiling[n/k^i] + Floor[n/k^i]), {i, k}], {k, n}], {n,
80}]
CROSSREFS
Sequence in context: A312742 A312743 A267368 * A190692 A309322 A312744
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 07 2021
STATUS
approved