login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} n^(floor(n/k) - 1).
4

%I #17 Jun 07 2021 09:09:20

%S 1,3,11,70,633,7821,117709,2097684,43047545,1000010125,25937439391,

%T 743008621422,23298085496173,793714780786669,29192926036832363,

%U 1152921504875352376,48661191876077295937,2185911559749718388655,104127350297928227579629

%N a(n) = Sum_{k=1..n} n^(floor(n/k) - 1).

%H Seiichi Manyama, <a href="/A345030/b345030.txt">Table of n, a(n) for n = 1..387</a>

%F a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} x^k * (1 - x^k)/(1 - n*x^k).

%t a[n_] := Sum[n^(Floor[n/k] - 1), {k, 1, n}]; Array[a, 20] (* _Amiram Eldar_, Jun 06 2021 *)

%o (PARI) a(n) = sum(k=1, n, n^(n\k-1));

%Y Diagonal of A345032.

%Y Cf. A023037, A332533, A344551, A345036.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Jun 06 2021